Electrical synapses formed by connexin36 regulate inhibition- and experience-dependent plasticity.

نویسندگان

  • Friso Postma
  • Cheng-Hang Liu
  • Caitlin Dietsche
  • Mariam Khan
  • Hey-Kyoung Lee
  • David Paul
  • Patrick O Kanold
چکیده

The mammalian brain constantly adapts to new experiences of the environment, and inhibitory circuits play a crucial role in this experience-dependent plasticity. A characteristic feature of inhibitory neurons is the establishment of electrical synapses, but the function of electrical coupling in plasticity is unclear. Here we show that elimination of electrical synapses formed by connexin36 altered inhibitory efficacy and caused frequency facilitation of inhibition consistent with a decreased GABA release in the inhibitory network. The altered inhibitory efficacy was paralleled by a failure of theta-burst long-term potentiation induction and by impaired ocular dominance plasticity in the visual cortex. Together, these data suggest a unique mechanism for regulating plasticity in the visual cortex involving synchronization of inhibitory networks via electrical synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Determinants of Magnesium-Dependent Synaptic Plasticity at Electrical Synapses Formed by Connexin36

Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg(2+)]i). Chimeragenesis demonstrates that the first ...

متن کامل

AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions

Electrical synapses (gap junctions) rapidly transmit signals between neurons and are composed of connexins. In neurons, connexin36 (Cx36) is the most abundant isoform; however, the mechanisms underlying formation of Cx36-containing electrical synapses are unknown. We focus on homocellular and heterocellular gap junctions formed by an AII amacrine cell, a key interneuron found in all mammalian r...

متن کامل

The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors.

Electrical synapses can undergo activity-dependent plasticity. The calcium/calmodulin-dependent kinase II (CaMKII) appears to play a critical role in this phenomenon, but the underlying mechanisms of how CaMKII affects the neuronal gap junction protein connexin36 (Cx36) are unknown. Here we demonstrate effective binding of (35)S-labeled CaMKII to 2 juxtamembrane cytoplasmic domains of Cx36 and ...

متن کامل

Structural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin

Functional plasticity of neuronal gap junctions involves the interaction of the neuronal connexin36 with calcium/calmodulin-dependent kinase II (CaMKII). The important relationship between Cx36 and CaMKII must also be considered in the context of another protein partner, Ca2+ loaded calmodulin, binding an overlapping site in the carboxy-terminus of Cx36. We demonstrate that CaM and CaMKII bindi...

متن کامل

Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating

We combined the Hodgkin-Huxley equations and a 36-state model of gap junction channel gating to simulate electrical signal transfer through electrical synapses. Differently from most previous studies, our model can account for dynamic modulation of junctional conductance during the spread of electrical signal between coupled neurons. The model of electrical synapse is based on electrical proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 33  شماره 

صفحات  -

تاریخ انتشار 2011